1,997 research outputs found

    Characteristic Kernels and Infinitely Divisible Distributions

    Full text link
    We connect shift-invariant characteristic kernels to infinitely divisible distributions on Rd\mathbb{R}^{d}. Characteristic kernels play an important role in machine learning applications with their kernel means to distinguish any two probability measures. The contribution of this paper is two-fold. First, we show, using the L\'evy-Khintchine formula, that any shift-invariant kernel given by a bounded, continuous and symmetric probability density function (pdf) of an infinitely divisible distribution on Rd\mathbb{R}^d is characteristic. We also present some closure property of such characteristic kernels under addition, pointwise product, and convolution. Second, in developing various kernel mean algorithms, it is fundamental to compute the following values: (i) kernel mean values mP(x)m_P(x), xXx \in \mathcal{X}, and (ii) kernel mean RKHS inner products mP,mQH{\left\langle m_P, m_Q \right\rangle_{\mathcal{H}}}, for probability measures P,QP, Q. If P,QP, Q, and kernel kk are Gaussians, then computation (i) and (ii) results in Gaussian pdfs that is tractable. We generalize this Gaussian combination to more general cases in the class of infinitely divisible distributions. We then introduce a {\it conjugate} kernel and {\it convolution trick}, so that the above (i) and (ii) have the same pdf form, expecting tractable computation at least in some cases. As specific instances, we explore α\alpha-stable distributions and a rich class of generalized hyperbolic distributions, where the Laplace, Cauchy and Student-t distributions are included

    Hilbert Space Embeddings of POMDPs

    Full text link
    A nonparametric approach for policy learning for POMDPs is proposed. The approach represents distributions over the states, observations, and actions as embeddings in feature spaces, which are reproducing kernel Hilbert spaces. Distributions over states given the observations are obtained by applying the kernel Bayes' rule to these distribution embeddings. Policies and value functions are defined on the feature space over states, which leads to a feature space expression for the Bellman equation. Value iteration may then be used to estimate the optimal value function and associated policy. Experimental results confirm that the correct policy is learned using the feature space representation.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    カーネル法と確率分布の無限分解可能性

    Get PDF
    Open House, ISM in Tachikawa, 2014.6.13統計数理研究所オープンハウス(立川)、H26.6.13ポスター発

    厳密なカーネル平均を利用した状態空間フィルタリングアルゴリズム

    Get PDF
    Open House, ISM in Tachikawa, 2013.6.14統計数理研究所オープンハウス(立川)、H25.6.14ポスター発

    収束保証つき確率推論アルゴリズム

    Get PDF
    Open House, ISM in Tachikawa, 2011.7.14統計数理研究所オープンハウス(立川)、H23.7.14ポスター発

    POMDP価値反復アルゴリズムのカーネル化

    Get PDF
    Open House, ISM in Tachikawa, 2012.6.15統計数理研究所オープンハウス(立川)、H24.6.15ポスター発

    New Bifunctional Antioxidants : In tramolecular Synergistic Effects between Benzofuranol and Thiopropionate Group, Part II

    Get PDF
    The antioxidant activities of benzofuranols and chromanols with methyl, methyl thiomethyl and thiopropionate groups were evaluated for the oxidation of tetralin at 61 and 140℃. The antioxidants tested showed almost the same behaviour for the oxidation of tetralin initiated by an azo initiator at 61℃. However, benzofuranol and chromanol with a thiopropionate group at the meta position of the OH group were shown to improve antioxidant activity at high temperature to a greater extent than the methyl and methyl thiomethyl groups
    corecore